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ABSTRACT

The permutations, which are routable through a
fsultistage interconnection network without any conflict
(kuown as the admissible permutations) play important
role in determining the capability of the network.
Admissibility of frequently used permutations becomes a
crucial issue when we decide on best matehing between
parallel algorithms and architecture of paralle
compsuiers.

In this paper, we propose an innovative approach fo
analyze the permutation admissibility. The approach is
centered upon colored Petri net modeling of multistage

interconnection network with further analysis of
associated model through exploiting coloved place
invariauts.

1. INTRODUCTION

Rapid communications among processors are
important for parallel computers. Permutations are
frequently used comununications. For example, data
are permuted among processors for the next step of
parallel algorithm or data are scrambled before they
are slored in the parallel memory. Permutation can be
viewed as a one-to-one and onto mapping of sources
to desired destinations. A permutation is said to be
admissible 1o MIN if conflict-free paths can be
established for all input-output pairs simultaneously.
Many kinds of MINs have been mvestigated for
permutation admissibility. Over the years researchers
liave  investigated the adrussibility of linear-
permutation-class (LIN) and bit-permutation-class
(BPC) permutations to shuffle-type [4-6], cube-type
{3,7} and hypercube [B] networks. These works are
mainly centered upon use of algebraic techniques or
so-called window method [7] to find out a better
routing algorithm to generate particular permutation
for associated networks. Deciding on whether an
arbifrary permntation is admissible to a given MIN is
still difficult problerm.

Peut nets provide a framework for the modeling,
sinmilation, specification and validation of dynamic
systems. Petri nets are flexible specification languages
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for concurrent systems and offer wide range of

applicability. Petri nets have been successfully
employed in many scientific and industrial
applications. in [1-2] CP-nets particularly have
successfully been employed for analysis the

permutation capability in MINs.

CP-nets are class of high level Petri nets which in
tum  evolved from finite state autornata as
specification for concurrent systems. The use of colors
allows a convenient way to manipulate information
that we have been able to exploit in modeling of
MINs. The convenience is both in the size of the
model, which becomes comparable to that of the MIN
itself, and in easiness with which the behavioral
features are captured.

In this work we propose a new approach to
investigate the permutation admissibility, which is
based on modeling of MINs with colored Petri nets
(CP-nets). The main idea behind of the proposed
approach is to reduce the permutation admissibility
problem to the problem of reachability in CP-nets.
There exist a plenty of well-established and easy-to-
use methods to analyze reachability in ordinary P/T-
nets including reachability graph, coverability graph
and place invariants methods. On the other hand, it 1s
broadly-known that ordinary P/T-nets and CP-nets
have the same computational power meauing that
given a CP-net, one can construct an equivalent P/T-
pet and vice versa. Once CP-net modeling of a MIN
has completed we can further transform related CP-net
to an equivalent P/T-net and use the method of place
invariants to decide on permutation reachability in
CP-net and herein decide on permutation adnissibility
to the given MIN.

The remainder of the paper is organized as
follows. CP-net model of a MIN is presented in
Section II. Colored place invariants are discussed
in Section 1. In Section 1V colored place
invariants are implemented to MINs. Finally,
Section V is a conclusion.



II. MIN CP-NET MODELING

As it is defined in [1-2] a CP-net of a MIN is 9-tuple
CPN=(S,P,T,4A,N,C,G,E I), such that

s I ={INPUT,CONDITION} , where
INPUT ={0,...,2" -1}, CONDITION ={OK} ;
% P=P, UP, JPy, VP, where
e P,={IN}, i=1,..,2"", is the set of input
places;
o P ={AUX}, i=1,...,m2"" is the set of
auxiliary places;
s I,={0UTL}, i=1..,2",
output places;
e P, ={CDN}, i=l..,(m+)2"", is the
set of condition places;
% T'=T,, uTl,,, where
e T ={SW3}, i=1,...,m2"" is the set of
switch transitions;
e T,,={DBE}, i=1,..
display transitions;
A= Ag YAy YAy U A, , where

is the set of

L2 is the set of

* Agy (B xTgy ) (T x Py ) is the set of
switch arcs;

* Apy S Py xTy)
arcs;

o Ay © (Fepy xT) V(T xPy,y) is the set of
condition arcs;

* App © (P xTpp) I (Tpp X Fyp) is the set

is the set of pattern

of display arcs;

& C(p)= CONDITION, ifpeP.,

TP = vk, otherwise:

v G)=trueVieT;

+ E(a)= NEXT, ifae A?DN
(Var(a)),s, otherwise

where Type(Var(a)) = INPUT ;

s K )>{1'(2i‘2)+1'(2i~1), ifpe INii=1,...,2""

(empty, otherwise.

In the above definition, the set of places P, the
finite set of transitions T, the finite set of arcs A, and
the node function N determine a directed graph
representing the static structure of the CP-net.
However, the finite set of non-empty types, called
color sets X, the guard function G, the colour function
C, and the arc expression function E determine the
dynamic structure of the CP-net. / the initialization
function is used to generate the initial marking wliich
represents the initial state of the system. The sets P,
T and A are pairwise disjoint ie.

PNT =P A =TnA=¢. The node function
N 4 > PxT UT xP associates each arc with a
pair of nodes. Each arc connects a place p to a
transition ¢t or vice versa. The colour function
C :P —> I assigns a colour set C(p) to each place
p. The guard function G is defined from T into

expressions such that

Vi eT :[Type{G(t)) =B A Type(Var(G(1))) < Z].

Figure 1. 8 x 8§ Omega network.

As an example of CP-pet diagram of 8x8§ Omega
network (Figurel) is illustrated in Figure2.

III. COLORED PLACE INVARIANTS

Place invariants are equations that are satisfied in
all reachable markings of the CP- net and ate used to
verify certain properties of the CP-net. The incidence
matrix / of a CP-net containis a row for each place
pe P and a column for each transition ¢ < 7. Each

matrix element is defined by
(p,)(0) = E(t,p) <b>-E(p,1)<b>,

where tokens are removed from and added in places
according to the expressions E(f,p)<b> and
E(p,t)<b>, respectively. In the above [ormula
I{p.t)(b) describes how the marking of a place p is
changed when the transition ¢ occurs with a binding b.

The important ingredients of the place invarianis
are incidence matrix [, step ¥ and two markings
M, and M'. An incidence matrix / is another way
to represent the structure of CP-pet, which turns out to
be convenient when we deal with calculation of
invariants. Step ¥ is a collection of transitions for all
enabled bindings. Finally, M, and M  stand for the
initial and the final markings. Analysis of reachahility
by the method of place invariants is described by the
equation:

M =My +I Y )p),
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Figure 1. 8 x § Omega network CP-net diagram.

where

(LoY)=3% 3 Hp1)(@)

el pel{n)
S5 S (E,p) <b>—E(p,1) <b >)

1T pel (1) beY (1)

> S Ewpy<bz-Y 3 Ept)<b>

(1 b1y pei vy (@ hyey peY (1)

Il

IV. CASE STUDY

As an example, let us consider the incidence
mawrix for §x& Omega network. The clements of
related incidence watrix are linear functions:

d'n ++1'n, y=1'n++1"n,,
Fork(U'n ++1'n,)=1'n_k € {i,i + 1}
Join(Un, U'n ) =1"n++1'n;,n; #n,
Cdn(1'n; +1'n,, ) =1"0K,
where ny,m €C(p), L <0, j,k £8. The
identity function [d is used to indicate the binding

clements (transitions together with the surrounding
arcs und arc expressions), which move tokens from

Ui
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source places into destination places and keep the
number and type of the tokens as they are. These
binding elements appear in the left side of CP-net
diagram of Figure 2. The binding elements in the
middle of CP-net diagram (see Figure 2) are
determined by the function Fork . The function Join
represents binding elements that are arranged on the
right side in Figure 2. Finally, the binding elements
between conditional places and transitions (vertical
arcs) are represented by the function Cdn . Zero
function is denoted by an empty matrix entrance.
Corresponding incidence matrix is shown in Table 1.
In order to increase the readability, we list the places
together with their color sets at the left of the table and
transitions together associated bindings at the top.

In order to perform fully automatic calculation of
colored place invariants we need to write down all
place invariants, each representing a linear equation,
represent CP-net as incidence matrix, and solve a
homogeneous matrix equation. If the matrix equation
has a solution (unique or multiple) then marking M ' is
reachable from the initial marking, i.e. M e R(M,).

‘The non-existence of the solution indicates that M is
not reachable from the initial marking.




Table 1. § x & Incidence matrix of Omega network CP-net.
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INPUT IN4 -id
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. S
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A problem causes when we try to employ computer
tools for aulomatic calculation of place invariants.
Since the elements of incidence mamix are functions
rather that numeric values, the method of colored
place mvariants is less useful for computerized
analysis. Instead we would suggest CP-net unfolding
and then verification of reachability in terms of place
invanants for ordinary P/T-nets. Consequently an
approach proposed in this work

V. CONCLUSION

In this paper we introduce a novel techmique for
analysis of permutation admissibility to a MIN, Based
on this technique we can decide on penmutation
admissibility through analysis of reachability property
of related CP-nets. The procedure passes through the
following stages:

«  CP-net modeling of a MIN

« Computing colored place invariants

+  Computing CP-net unfolding

«  Computing place invariants

« Reachability analysis  through
equations.

matrix

The main advantage of the proposed technique is that
it allows us to perform fully automatic analysis of the
objects.
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